Что такое гипотеза Пуанкаре?

Гипотеза Пуанкаре
Гипотеза Пуанкаре

Представленная в 1887 году Анри Пуанкаре гипотеза практически сразу же после появления взволновала общественность. «Всякое замкнутое n-мерное многообразие гомотопически эквивалентно n-мерной сфере тогда и только тогда, когда оно гомеоморфно ей» – именно так звучит данная гипотеза.

Над нею безуспешно ломали голову ученые – геометры и физики со всего мира. Так продолжалось около 100 лет. Раскрытие секрета утверждения в 2006 году стало настоящей сенсацией. И самое главное – доказательство теоремы было представлено российским математиком Григорием Перельманом.

Математик Григорий Перельман — лауреат медали Филдса
Математик Григорий Перельман — лауреат медали Филдса

Вопросы, связанные со сферой двумерного вида, были понятны в девятнадцатом веке. Положения многомерных объектов определены в 1980-х годах. Сложности создавало только определение трехмерных объектов. В 2002 году российским ученым для доказательства было использовано уравнение «плавной эволюции». Благодаря этому ему удалось определить способность трехмерных поверхностей, не имеющих разрывов, деформироваться в трехмерные сферы. Определение, представленное Перельманом, вызвало интерес множества ученых, которые подтвердили, что это решение современного поколения, открывающая перед наукой новые горизонты, обеспечивающая широкие возможности для дальнейших открытий.

Представленная российским ученым теория имела множество недочетов, требовала ряда доработок. В связи с этим ученые взялись за поиски доказательств объяснения. Некоторые из них потратили на это всю свою жизнь.

Материалы по теме:
Почему неизвестное в математике принято обозначать буквой Х?

Гипотеза Пуанкаре простым языком

Гипотеза Пуанкаре простым языком
Гипотеза Пуанкаре простым языком

Вкратце теорию можно расшифровать в нескольких предложениях. Вообразите, немного спущенный воздушный шарик. Согласитесь, это совсем не сложно. Ему очень легко придать необходимую форму – куба или овальной сферы, человека или животного. Доступное разнообразие форм просто впечатляет. При этом существует форма, являющаяся универсальной, – шар. При этом формой, которую невозможно придать шарику, не прибегая к разрывам, является бублик – форма с дыркой. Согласно определению, даваемому гипотезой, предметы, в форме которые не предусмотрено отверстие сквозного типа, отличаются одинаковой основой. Наглядный пример – шар.

При этом тела с отверстиями, на в математике им дано определение – тор, отличаются свойством совместимости друг с другом, но при этом не со сплошными объектами. Например, если мы захотим, то без проблем сможем вылепить из пластилина зайца или кошку, потом превратить фигурку в шар, затем – в собаку или яблоко. При этом можно обойтись без разрывов. В том случае, если изначально был вылеплен бублик, то из него может получиться кружка либо «восьмерка», придать массе форму шара уже не удастся. Представленные примеры наглядно показывают несовместимость сферы и тора.

Материалы по теме:
Почему неизвестное в математике принято обозначать буквой Х?

Гипотеза Пуанкаре применение

Понимание значения гипотезы Пуанкаре наряду с определением открытия, сделанного Григорием Перельманом, позволит намного быстрее разобраться с данным утверждением. Гипотеза может быть использована ко всем материальным объектам нашей Вселенной. При этом вполне допустимо ее верность и применимость положений и непосредственно ко Вселенной.

Можно предположить, что началом появления материи послужила незначительная точка одномерного типа, которая прямо сейчас формируется в многомерную сферу. Соответственно возникает множество вопросов – возможно ли найти границы, выявить единый механизм свертывания объекта к первоначальному состоянию и т.д.

Российским ученым было математически доказано, что если поверхность односвязна, не является бубликом, то в результате деформации, обеспечивающей полное сохранение характеристик исследуемой поверхности, можно легко и просто получить арбуз или, проще говоря, сферу. Это может быть любой круглый предмет, который без каких-либо трудностей может быть стянут в точку. Обернув сферу можно при помощи обычного шнурка. В последствии шнур можно связать в узелок. Проделать тоже самое с бубликом не получится.

Самая простая модель, представляющая шар, может быть свёрнута в виде точки. Если Вселенная – это шар, то значит, что она также может быть свернута в одну точку, а после развернута снова. Таким образом Перельман показывает своё умение теоретического управления Вселенной.

Материалы по теме:
Почему неизвестное в математике принято обозначать буквой Х?

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Рейтинг: 5.0/5. Из 2 голосов.
Please wait...